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Distance dependence of radiation energy flux 
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Received 14 February 1992, in final form 23 June 1992 

Abstrad. The distance dependence of the energy flux and of the wave polarization in 
incoherent synchrotron radiation, as well as the form of the separatrix dividing the near 
and wave zones, are elaborated. 

The classical theory of the electromagnetic radiation of charged particles has a century- 
long history. But until the past few decades little attention seems to have been paid 
to the energy flux in regions of space not belonging to the wave zone, and to the 
structure of the closed surface (separatrix) separating the wave zone from the near 
zone (for the case of relativistic particles). Teitelboim et al(l980) investigated carefully 
the distance dependence of the field components, the components of the energy- 
momentum tensor and the components of the angular momentum tensor for an 
accelerated particle. Subsequently Villaroel and Fuenzalida (1987) and Villaroel and 
Millan (1988) considered some special effects that may be observed near the orbit of 
the particle. Unfortunately, their interpretation of the formulae obtained, as we shall 
show below, is incorrect, and this compelled us to consider the problem again and in 
more detail. 

There is a number of reasons why the results of Villaroel et al are misleading. 
First, they misinterpreted the results of their predecessors. In particular, neither 

Schott (1912) nor Schwinger (1949) mentioned the radiation in the ‘radial’ direction; 
instead, they considered the radiation in all directions starting from the point where 
the particle is at the moment of radiation, and integrated the radiation intensity over 
the whole sphere. Also, the allegation that the energy of the particle does not play any 
role in Schott’s formula is wrong since this formula leads to the correct energy 
dependence of the total radiation intensity. 

Second, Villaroel et al did not make a clear distinction between the notions of the 
radiation and the energy flux. The determination of the radiation intensity is not at 
all based on some approximations, but is by definition that part of the energy flux 
which within a fixed solid angle penetrates any distant region of space. Lienard (1898) 
was the first to use this definition. Such a definition is reasonable since otherwise we 
might say that a charge moving uniformly and rectilinearly also radiates. Indeed, in 
the latter case the energy density rises in those regions of space which the charge 
approaches, while it falls in those from which it moves off, but these energy fluxes do 
not reach distant regions of space. Therefore, there is a local energy flux, but no 
radiation. 

Third, the only natural physical parameter responsible for the behaviour of the 
energy flux is the distance 4e between the radiation and the observation points; the 
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dimensionless parameter is a/B,  where a is the radius of curvature of the particle 
trajectory at the radiation point. Instead, Villaroel et a1 use the parameter 6 = a / r ,  
where r is the distance of the observation point from the centre of the orbit of the 
charge. Obviously, a/R = 6 / ( 1 -  62)1’2, and these parameters are, in principle, 
equivalent. Nevertheless, we shall see that all expansions in a / %  are finite, while those 
in 5 are infinite and quite complicated. This makes difficult the correct interpretation 
of the results obtained. In their formula (2.7) Villaroel and Fuenzalida neglect 
the term S2, the only term introducing the distance dependence of the energy flux. 
Therefore, there should remain no distance dependence. Finally, Villaroel er a1 did 
not indicate the principles of the organization of an experiment intended to observe 
the radiation in the ‘radial’ direction. Obviously, the expected results essentially depend 
on whether or not the detector is protected against the radiation in the tangential 
direction. 

Everything conceming the energy flux refers also to the fluxes of linear and angular 
mom en t a. 

If the charge e, is situated at the 4-point x,, it is known to create at any field point 
x = ( r ,  t) the LiCnard-Wiechert field 
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-[(x - -Xl)Wl,  - (x -xA,w,;l[(x -x l )u l l }  (1) 

(x - x # =  0 (2) 

where uI and w, are the 4-velocity and the 4-acceleration of the charge at x, (we are 
using a complex Euclidian metric). Equation (1) is an exact solution of Maxwell’s 
equations, but is expressed implicitly, since it is applicable only when (2) is satisfied. 

The field on the wavefront may be expressed explicitly if we fix the radiation point 
x, and do the substitution 

x, = xli + Sen; (3) 

where n; = (n ,  in,) is a 4-vector satisfying the condition n2 = 0. Under a Lorentz 
transformation n is transformed as the linear momentum of a photon. Equation (2) 
is now satisfied identically. The field acquires the form (in (4)-(7) we omit the 
subscript 1) 

where 

f;=ui(nw)-w;(nu) nf=O. ( 5 )  

Note that there is no infinite expansion in the powers of l/B. An infinite expansion 
arises if the radiating system consists of more than one particle (Klepikov 1985a, b). 
But we are not going to consider this case here. 

In order to prevent unjustified objections we should note that the fact that (4) is 
a solution of Maxwell’s equations cannot be tested by means of differentiating (4) by 
the independent variables (Se and two angles of n ) ,  since any variation of the observa- 
tion point entails, according to (2), a variation of the radiation point. 
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Now we may consider the expressions for the electric and magnetic fields ( p  = u / c ) :  

(6) 
( n  - u/c )nw-  w(1 -nu/c) 1 ( n  - u / c ) ( l - p 2 )  +- se c2(1 - ~ U / C ) ~  se ( I -nu /c ) ’  

) (7) 
( I / c ) ( n x  u ) ( n w ) + ( n  x w ) ( I  - n u / c )  ( n x  u ) ( l - p 2 )  

i- 
c2(1 -nu/c)’ c s e ( ~ - n u / c ) ~  ’ 

H = - -  
se 

The total energy flux at the distance 9 from the radiation point is expressed as 
dE4 c 
dt, 47r 
-=-B2 I dfL n ( E x H )  

where the last factor is the derivative d t ld t ,  . 

result of the integration is 
Angles of the direction n may be introduced in a number of ways. In any case the 

where a is the radius of curvature of the trajectory of the charge at the radiation point. 
For synchrotron radiation the values of a and P 2  may be considered as independent 
of t , .  

The first term of (9) is called the radiation intensity and was first found by LiCnard. 
The second one is the local energy flux, which raises the energy density in some parts 
of the local region surrounding the position of the charge. 

If, instead of integrating (8) over the whole sphere, we consider only the plane 
tangential to the trajectory of the charge at x,, and integrate (8) over the azimuth in 
this plane, we get 

dt, a2 
_ = _  

The reader should note that in (10)  the energy flux is integrated not over a solid angle, 
but over a plane angle in the tangent plane. Since a / B  =[/(1-[2)‘/2, for l-p2<< 1 
and 6 near to unity the first term of (10) coincides with formula (2.46) of Villaroel 
and Fuenzalida. Consequently, their formula describes the radiation intensity not in 
a solid angle but in a plane angle also. However, any detector occupies some solid 
angle. To account for this, (10)  should be multiplied by 3, and any increase in the 
radiation intensity near the orbit (which Villaroel et al insist on) disappears. 

From (9) we may deduce the criterion of the wave zone in a radiation process. The 
second term of (9) is much less than the first if 

where A. is the wavelength corresponding to the rotation frequency of the charge. For 
sufficiently high energy of the particles, the radius of the wave zone may be much less 
than this wavelength. 

Take into account that ( 1 1 )  is based on the total intensity and therefore may not 
reflect the local structure of the closed separating surface. In order to investigate this 
fine structure and the polarization of the radiation under consideration let us introduce 
local angular coordinates for a fixed value of I , ,  which are shown in figure 1. The 
x-axis is directed along the tangent to the trajectory, the y-axis along the principal 
normal and the z-axis along the bi-normal. Then polarization direction vectors may 
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tz 

Figore 1. Local direnians at the radiation point. 

be introduced: n is the radiation direction, U is the unit vector lying in the tangent 
plane and perpendicular to n and, finally, n = ( n x u ) .  The angle a denotes the 
deviation of n from the x-axis, and y is the azimuth in the plane perpendicular to the 
x-axis. The components of these vectors and of the fields are 

n ={cos a, sin a cos y, sin a sin y, i} 
sin a cos y cos a 

(cos2 a +sin2 a cos’ y)”” (cos’ a +sin’ a cos2 y) l j2’  

I -sin a cos a sin y -sin2 a sin a cos y 
(cos2a+sin’a cos’y)‘/’ 

(cos’ a +sin2 a cos’ y)”” (cos2 a +sin’ a cos’ y)”” 

0 ={U, 0,O) w =  Cl  0 , - , o  

e p 2 [ p  -cos a - p sin’ a sin’ y ]  
%a( 1 - p cos (I)~(cos’ a + sin2 a cos’ Y ) ” ~  

E,=H,,= 

ep sin a cos y(  1 - p’) 
~ ’ ( 1 - p  cos a ) 3 ( ~ ~ ~ 2 a + s i n 2  a c0s’1iy)~/’ 

+ 
ep‘ sin’ a sin y cos y 

%a(l  - p  cos ~T)~(COS’ a +sin2 a cos’ y) ’ I2  
E,, = - H ,  = 

ep sin a cos a sin y(  1 - p’) 
%’(I - p  cos a)’(cosZ a +sin2 a cos2 y)”” 

+ 
The total intensities are 

(14)  

The sum of I, and I,, coincides with (9). 
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Since 

n ( E x H ) =  E’,+E’, 

then inserting (17) into (8) we get the integrand of (8) in the form 

dt, dn-4ra2(1 -6 cos ~ ) ’ ( C O S ~  afs in’a  cos2 y) 
d% ce2 -- 

x p4[(p -cos a - p  sin2 a sin’ y)’+sin‘ a sin2 y cos2 y ]  ( 
2a 
9l 

+ - ( ~ - ~ 2 ) ~ 3 s i n a c o s y ( p - c o s ~ - p s i n 2 ~ s i n 2 y + s i n 2 ~ c o s a c o s y )  

The term proportional to a / %  does not contribute to the total energy flux since 

1; sin’ a d a  joz“ d y cos y ( p  -cos a - p sin’ a sin2 y + sin2 a cos a cos y )  = 0. 

This follows also from the results of Sokolov et al (1971). Omitting this term and 
equating the first and third terms in the braces in (IS), we find the equation of the 
separatrix: 

(19) 
(1  - p 2 )  sin a(cos2 a +sin2 a cos2 y)”’ 

p[ (p  -cos (I - p  sin2 (I sin2 y)’+sin4 a sin2 y cos2 ~ 1 ” ~ ’  91e,=a 

The wave zone spreads at 9l >>Ses; the near zone at 9l << Se,. Therefore, the exact form 
of the separatrix (19) is not very important, but of special interest are the following 
four directions: if a = 0 or a = v, 91s = 0, the wave zone reaches the radiation point; 
if cos a = p and y = 0 or y = r, 92. = 00, all long-range fields vanish, the wave zone 
and the radiation disappear. In the former case 

In the latter case 

(21) 
E,, = H, = O  E, = E, = If, = H, = O  

Se2( 1 - p y  E, = H,= 5 

The fact that in this case the border of the wave zone goes to infinity was noted first 
by Bagrov (1965). 
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Figure 2. Seaion of the separatrix by the plane x = 0. 
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Figure 3. Section of the separatrix by the plane y = 0. 
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Figure 4. Section of the separatrix by the plane I = 0 
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It may be noted that integration over y involves the integral j r d q ( a 2 s i n 2 v +  
b2 cos q)-’’’=Z?r/labl which by Gradstein and Ryzhik (1965) is presented without 
the absolute value on the right-hand side, and this leads to an incorrect result. 

The form of the separatrix may be illustrated by means of its sections which are 
shown in figures 2-4 for p = 0.9. Dotted circles show sections of the sphere (1  1). 

Figure 2 shows the section by the plane x=O ( a = ? r / 2 )  for which B= 
a ( l - p 2 ) / ( ~ ( ~ 2 ~ ~ ~ 2  y+sin2 y)I / ’ ) ;  note the point inside. If x<-O.6, there is no 
section. If x -0.6, there appears a section having the form of one closed curve. For 
-0.6<x<O, the above-mentioned curve is divided into two closed curves, one of 
which lies inside the other. At x = 0 the inner curve shrinks into a point, and the other 
one is shown on figure 2. If O<x <0.3, the section again consists of two curves, one 
of which lies inside the other, and both of them grow. For 0.3<x<0.44 the outer 
curve acquires cavities in the z-direction from outside, and the inner one protrusions 
in the same direction, but from inside. At about x 0.44 these curves touch each other 
and, changing their topology, break into two closed curves lying outside each other. 
At 0.44 < x < 00 these curves shift apart and become smaller. 

Figure 3 shows the section of the separatrix by the plane y = 0 ( y  = a / 2 ) :  % = 
a( l -p2)sin a / ( p ( 1 - p  cos a)). Iflyl>O,eachsectionisaclosedcurvehavingcavities 
in the front and rear directions. For lyl> 0.44 these cavities disappear, and the sections 
tend to extended closed curves, becoming shorter and narrower. 

Figure 4 shows the section by the plane z=O ( y = O ) :  % =  
a( l -p*)s inn/ (pIp-cos  ai). If O<z<O.3, each section is a closed curve having a 
small cavity in the rear part and a much bigger one in the front part. For Izl==0.3 the 
section shrinks to a point and disappears. 

Two horns seen in figure 3 correspond to cos a = p, y = 0 and to cos a = p and 
y = ?r. All the diagrams show that 5? = 0 if a = 0 or a = ?r (including the point inside 
figure 2). 
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